SUPR
QUNOMES: QUantum NanOstructured Materials for Energy Scavenging and Storage: Application of Two-Dimensional Materials in Next-Generation Batteries, Solar Cells, Biosensing, and Healthcare
Dnr:

NAISS 2024/1-23

Type:

NAISS Large Compute

Principal Investigator:

Rajeev Ahuja

Affiliation:

Uppsala universitet

Start Date:

2024-07-01

End Date:

2025-07-01

Primary Classification:

10304: Condensed Matter Physics

Secondary Classification:

10403: Materials Chemistry

Allocation

Abstract

The research activity of our Condensed Matter Theory Group in Uppsala University Group is mainly focused on a wide range of computational materials science projects. Our group's specialization in materials modelling extends not only to nanomaterials, superconductors, two-dimensional materials, and biomaterials, but also to modern applications such as catalysis, biophysics, bioinformatics, biosensing, next-generation batteries, and DNA/Protein sequencing research. The electronic structure simulations used in our projects are based on density functional theory (DFT). In this proposal, we have mainly focussed on five major project areas. 1. 2D-materials for Next-Generation Battery Materials and energy storage: The transformative advancement of next-generation battery technologies has opened the way for fundamental energy storage science. The convergence of expertise, methods, and ideas provides enormous potential for energy storage in the next decade through an effective technological strategy that must be solved through computational approaches such as testing different electrode materials and electrolytes. 1.a Water-splitting: We plan to conduct cutting-edge theoretical high-throughput research to predict the enhanced water splitting behaviour of recently synthesized 2D-materials based on the band edge alignment principle. Following the high throughput analysis, the hydrogen and oxygen evolution reaction (OER) will be considered. 1b. Hydrogen-Storage: Hydrogen being the most common substance/green fuel in the world, emits safe, contaminant-free emissions and is energy-efficient. There is a highly feasible possibility in current energy research to substitute fossil fuels with hydrogen-based energy systems; nevertheless, storing hydrogen under suitable conditions is a difficult problem for which we plan to investigate hydrogen adsorption stability, geometry and process on different 2D- materials using DFT calculations. 1c. Flexible Thermoelectric Devices Thermoelectric materials have the ability to directly transform heat into energy while subjected to a temperature gradient. We will try to explore the architecture of next-generation thermoelectric materials using statistical methods. 2. High Throughput Screening of Stability in Lead free Hybrid Perovskites Solar Cells We are attempting a combinatorial computational screening materials selection paradigm for lead-free perovskites. 3. Oil and cellulose liquid–solid interface for power transformers The experimental studies till date, on the breakdown characteristics of oil–paper composite insulation in transformers have not been able to obtain sufficient evidence to explain the breakdown electric field phenomenon. This motivates our study which gives a theoretical basis for microscopic mechanisms by special schemes to be studied on a molecular/atomic scale. 4. Biophysics and biomedical application of nanomaterials The opportunity to study compounds at the molecular level using computational approaches has accelerated the quest for products with exceptional properties for use in medicine. The use of these innovative materials has given rise to a modern-science area known as nanobiotechnology, which is essential in disease detection, drug-design and distribution, and implant design. 5. Environmental Hazard Detection by 2D Materials In this study, we will focus on the environmental aspects of the group III-V 2D materials using the first principles based DFT