The goal of the project is to study, by means of deterministic (non-equilibrium ab initio molecular dynamics) and stochastic (kinetic Monte-Carlo), simulations the initial stages of thin metal film growth on weakly-interacting 2D substrates.
Atoms deposited from the vapor phase on weakly-interacting substrates self-assemble in dispersed three-dimensional (3D) nanoscale islands (i.e., nanostructures). A notable example is the deposition of metal films on two-dimensional (2D) crystals (e.g., graphene and MoS2) and functional oxides (e.g., ZnO and TiO2) for which the tendency toward the formation of 3D agglomerates imposes technological obstacles for the use of advanced materials in a wide range of energy, catalytic, sensing, and switching devices. Thus, understanding the currently unknown atomistic mechanisms that govern 3D island formation and shape evolution is a key step toward controlling film morphology and, by extension, the functionality of devices based on weakly-interacting film/substrate materials systems.
Over the past few years, we have carried out theoretical studies on the growth of thin metal films on weakly-interacting oxide and 2D material substrates using an in-house kinetic Monte-Carlo (kMC) algorithm and ab initio molecular dynamics simulations. Our results reveal possible pathways and mechanisms for 3D island formation, and provided new insights into the very initial stages of film formations. The goal of this project is to build upon the knowledge we have generated and the results we have achieved and continue modelling initial and late stages of noble-metal (e.g., Ag, Au, Cu, and Pd) film formation on model MoS2, TiO2, and ZnO surfaces. Our previously developed kMC code will be used as starting point and it will refined and augmented as detailed below:
(1) We will use DFT calculations to determine surface adsorption energies and diffusion barriers of metal adatoms on MoS2, TiO2, and ZnO.
(2) We will also employ non-equilibrium ab initio molecular dynamics simulations (modified version of VASP developed by us (Sangiovanni et al. PhysRevB 93, 094305 (2016)), to investigate atomistic processes and dynamics during the initial stages of film island nucleation and growth and improve the accuracy of KMC simulations.
(3) We will describe surfactant-modified growth of noble-metal layers on weakly-interacting substrates by coupling our previous KMC algorithm with machine-learning methodologies.
The project is related to the following funded proposals in which the investigator (Sarakinos) and the co-investigator (Sangiovanni) are principal investigators:
1. Project grant ÅF-22-150 (Åforsk foundation); Towards multiscale design of thin-film materials; Amount granted: 1,456,000 SEK; Principal Investigator: Konstantinos (Kostas) Sarakinos
2. Project grant VR-2021-04113 (Swedish Research Council); Nanoscale Design of 2D metal contacts on 2D materials; Amount granted: 4,000,000 SEK; Principal Investigator: Konstantinos (Kostas) Sarakinos
3. Starting grant VR-2021-04426 (Swedish Research Council); Ceramics with enhanced high-temperature toughness; Amount granted: 4,000,000 SEK; Principal Investigator: Davide G. Sangiovanni
Recent publications from our group where use of SNIC resources is acknowledged:
Zarshenas et al., under review in J. Vac. Sci. Technol. A (2023)
Kashiwaya et al., https://doi.org/10.21203/rs.3.rs-2807259/v2
Sangiovanni et al., Phys. Chem. Chem. Phys. 25, 829 (2023). (10.1039/D2CP04091C)
Lin et al., https://doi.org/10.48550/arXiv.2309.00996