SUPR
Uncertainty for model based reinforcement learning
Dnr:

NAISS 2024/22-3

Type:

NAISS Small Compute

Principal Investigator:

Emilio Jorge

Affiliation:

Chalmers tekniska högskola

Start Date:

2024-01-26

End Date:

2025-02-01

Primary Classification:

10207: Computer Vision and Robotics (Autonomous Systems)

Webpage:

Allocation

Abstract

We aim to develop novel approaches that are capable of producing in in a way that appropriately reflects underlying uncertainty for reinforcement learning. We are looking into approximate posterior sampling methods using Langevin/Hamiltonian dynamics for both neural networks and other representations to guide agents in their actions. Depending on the environments used, both gpu and cpu resources are more suitable. In the case of more advanced environments and larger neural networks, then GPU is a significant speedup and will be used. In the case of smaller environments, then CPU resources are more suitable as GPUs dont really give a speedup. I could try to make calculations estimating my usage, but honestly they would be wildly inaccurate, I have tried to estimate resonable amounts in the resources I have requested.